TD 13: Suites

Généralités (pratique) -

1 kt (Sens de variation) Étudier la monotonie éventuelle (en précisant si elle est stricte) des suites de termes généraux suivants :

$$a_n = \frac{(-1)^n}{n}$$

$$a_n = \frac{(-1)^n}{n}$$
 $b_n = \frac{2 + (-1)^n}{3^n}$ $c_n = \frac{n^n}{n!}$

$$c_n = \frac{n^n}{n!}$$

existe, la limite des suites de termes généraux suivants :

1)
$$u_n = n^2 \arccos\left(\frac{1}{n}\right)$$

$$6) \ u_n = \sqrt{n+1} - \sqrt{n}$$

2)
$$u_n = \frac{3 + 5n - 2n^3}{-5n^3 + \cos n}$$
 7) $u_n = (3 + \sin n)^{\frac{1}{n}}$

7)
$$u_n = (3 + \sin n)^{\frac{1}{n}}$$

3)
$$u_n = \frac{(2 + \cos n)^n}{4^n}$$

8)
$$u_n = \sqrt{n^2 + 1} - 2n$$

$$4^n$$

$$4) u_n = \ln(n+1) - \ln n$$

9)
$$u_n = n^{\frac{1}{n}}$$

5)
$$u_n = \frac{e^n}{n \ln n}$$

10)
$$u_n = \frac{\lfloor \sqrt{n} \rfloor}{\sqrt{n}}$$

3 🖈 Étudier la nature de la suite de terme général

$$u_n = \left\lfloor 3 + \frac{(-1)^n}{n} \right\rfloor$$

4)★★ (Série harmonique)

- 1) Montrer que : $\forall x \ge 0$ $\ln(1+x) \le x$
- 2) En déduire que pour tout $n \in \mathbb{N}^*$, $\ln(n+1) \leq \sum_{i=1}^{n} \frac{1}{k}$.
- 3) En déduire la nature de la suite de terme général $u_n = \sum_{i=1}^n \frac{1}{k}$.

5)★★

- 1) Montrer que : $\forall x \ge 0$ $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 2) En déduire la limite de $u_n = \left(1 + \frac{\alpha}{n}\right)^n$, où α est un réel fixé.

6 $\star\star\star$ Montrer que $\sum_{k=0}^{n} {n \choose k}^{-1}$ tend vers 2 quand *n* tend vers $+\infty$.

Généralités (théorie) —

Vrai ou faux ? Justifier.

- 1) Toute suite croissante admet une limite (finie ou non).
- 2) Toute suite décroissante est majorée.
- 3) Soit $u \in \mathbb{R}^{\mathbb{N}}$. Si $|u_n| \to \ell$, alors $u_n \to \ell$ ou $u_n \to -\ell$.
- 4) Une suite positive qui converge vers 0 est décroissante à partir d'un certain rang.
- 5) La somme de deux suites convergentes est convergente.
- 6) La somme de deux suites divergentes est diver-
- 7) La somme d'une suite convergente et d'une suite divergente est une suite divergente.

8 $\rightarrow \infty$ Soit $\varepsilon > 0$ et A > 0. Déterminer un rang N, pas forcément le meilleur, à partir duquel :

1)
$$\frac{1}{\sqrt{n+1}} < \varepsilon$$

$$3) \sqrt{n^2 - n} > A$$

$$2) \ \frac{n}{n^2+1} < \varepsilon$$

4)
$$3^n - 2^n > A$$

En utilisant la définition de la limite, montrer que:

1)
$$\frac{1}{n^2+1}$$
 tend vers 0.

1)
$$\frac{1}{n^2+1}$$
 tend vers 0. 3) $\cos\left(\frac{1}{n}\right)$ tend vers 1.

2)
$$|\sqrt{n}|$$
 tend vers $+\infty$

2)
$$|\sqrt{n}|$$
 tend vers $+\infty$. 4) $2n - n^2$ tend vers $-\infty$.

(10) $\star\star$ Soit (u_n) une suite réelle strictement positive. On suppose que $\frac{u_{n+1}}{u_n}$ tend vers un réel ℓ fixé.

1) On suppose $\ell < 1$. Montrer que (u_n) est décroissante à partir d'un certain rang. Quelle est sa nature?

- 2) On suppose $\ell > 1$. Montrer que (u_n) est croissante à partir d'un certain rang. Quelle est sa nature ?
- 3) Montrer que si $\ell = 1$, on ne peut rien dire.
- 4) Application : déterminer les limites de $u_n = \frac{e^{\sqrt{n}}}{n!}$ et de $v_n = \frac{n^n}{n!}$. On admet que $\left(1 + \frac{1}{n}\right)^n \to e$.

Soit (u_n) une suite à valeurs dans \mathbb{Z} . Montrer que (u_n) est convergente si et seulement si elle est stationnaire.

12 *** (**Moyenne de Césaro**) Soit $(u_n)_{n \in \mathbb{N}^*}$ une suite réelle. On définit la suite $(v_n)_{n \in \mathbb{N}^*}$ par

$$v_n = \frac{1}{n} \sum_{k=1}^n u_k$$

1) On suppose que $u_n \to 0$. Montrer que $v_n \to 0$. Indication: pour tous entiers naturels $n \ge N$

$$|v_n| \le \left| \frac{u_1 + \dots + u_N}{n} \right| + \left| \frac{u_{N+1} + \dots + u_n}{n} \right|$$

- 2) En déduire que si $u_n \to \ell \in \mathbb{R}$, alors $v_n \to \ell \in \mathbb{R}$.
- 3) Donner un exemple de suite (u_n) telle que la suite (v_n) ci-dessus converge, mais pas (u_n) .
- 4) Montrer que si $u_n \to +\infty$, alors $v_n \to +\infty$.

Suites implicites ———

Pour tout $n \in \mathbb{N}$, on considère l'équation suivante d'inconnue $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$:

$$(E_n)$$
: $x + \tan x = n$

- 1) Montrer que l'équation (E_n) possède une unique solution x_n .
- 2) Montrer que la suite (x_n) converge et déterminer sa limite.

14 *** Étudier la nature de la suite (u_n) où u_n est la n-ième décimale de $\sqrt{2}$.

Suites extraites, adjacentes, etc.

15 ★ Montrer que la suite de terme général $u_n = e^{(-1)^n n}$ est divergente.

16 ★★ Montrer que les suites de termes généraux suivants convergent :

$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 $v_n = u_n + \frac{1}{n}$

17 ★ On pose

$$S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$$

Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. En déduire que (S_n) converge.

Soit (z_n) une suite complexe telle que pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{1}{3}(z_n + 2\overline{z}_n)$. Montrer que (z_n) converge et exprimer sa limite en fonction de z_0 .

19 \bigstar Soit $\theta \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=0}^n \frac{\cos(k\theta)}{2^k}$$

Montrer que la suite (u_n) est convergente et déterminer sa limite.

20 ★★★ Soit (u_n) une suite telle que les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes. Montrer que (u_n) est convergente.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que $u_n+\frac{1}{2}u_{3n}\to 0$.

- 1) Montrer que si α est une valeur d'adhérence de (u_n) , alors -2α aussi.
- 2) On suppose que (u_n) converge. Déterminer sa limite.
- 3) Montrer que (u_n) converge.

22 *** Montrer qu'une suite (u_n) est non majorée si et seulement s'il existe une sous-suite $(u_{\varphi(n)})$ qui tend vers $+\infty$.

– Suites récurrentes —

23 \star Déterminer le terme général de la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{4}{5}u_n + 1$

24 \longrightarrow On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = (n+1)u_n + (n+1)!$$

Calculer u_n . On pourra poser $v_n = \frac{u_n}{n!}$.

25 \bigstar (*Suites récurrentes doubles*) Déterminer le terme général des suites (u_n) définies par

1)
$$u_0 = 1$$
, $u_1 = 0$, et $\forall n \in \mathbb{N}$ $u_{n+2} = 4u_{n+1} - 4u_n$

2)
$$u_0 = 1$$
, $u_1 = -1$, et $\forall n \in \mathbb{N}$ $2u_{n+2} = 3u_{n+1} - u_n$

3)
$$u_0 = 1$$
, $u_1 = 2$, et $\forall n \in \mathbb{N}$ $u_{n+2} = u_{n+1} - u_n$

4)
$$u_0 = 1$$
, $u_1 = 2$, et $\forall n \in \mathbb{N}$ $u_{n+2} = e^{i\frac{\pi}{4}}u_{n+1} + 2iu_n$

26 ** Déterminer la suite réelle définie par

$$\begin{cases} u_{n+2} = 4u_{n+1} - 4u_n + 2 \\ u_0 = 0 \\ u_1 = 1 \end{cases}$$

On pourra poser $v_n = u_n - 2$.

On définit les suites (u_n) et (v_n) par $u_0 = \frac{1}{2}$, $v_0 = \frac{1}{3}$ et, pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = u_n^2 v_n \\ v_{n+1} = u_n v_n^2 \end{cases}$$

- 1) Montrer que pour tout $n \in \mathbb{N}$, on a $u_n, v_n \in]0,1[$.
- 2) En déduire le sens de variation de (u_n) et (v_n) , et déterminer leur limite.

28 $\bigstar \star \star \star$ (*Suites de type* $u_{n+1} = f(u_n)$) Étudier les suites (u_n) définies par

1)
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = \sqrt{2 + u_n}$

2)
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = u_n + \arctan(u_n)$

3)
$$u_0 = -1$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = e^{u_n} - 1$

4) $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}$ $u_{n+1} = u_n^2$ (on discutera selon la valeur de u_0).

29 \longleftrightarrow On cherche toutes les suites réelles (u_n) vérifiant $(E): u_{n+1} - 3^{2n}u_n = 3^{n^2}$.

- 1) Soit (u_n) une solution. On note $C = u_0 \in \mathbb{R}$ le premier terme de la suite. Exprimer u_1, u_2, u_3 en fonction de C.
- 2) En déduire toutes les suites solutions de l'équation homogène (E_H) : $u_{n+1} 3^{2n}u_n = 0$ et les exprimer en fonction de $C = u_0$.
- 3) Déterminer une solution particulière de (E). On appliquera la méthode de la variation de la constante : on remplace C par C_n dans la solution de (E_H) , puis on injecte cette expression dans (E), et enfin on trouve une suite (C_n) qui convient.
- 4) En déduire les solutions de (E).